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Platelets induce apoptosis via membrane-bound FasL
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Key Points

• PLTs contribute to apoptosis
in vivo and express the death
receptor ligand FasL upon
activation.

• Membrane-bound FasL
mediates PLT-induced
apoptosis, whereas Bax/Bak
signaling is not required but
reinforces PLT-induced
apoptosis.

After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue

integrity and functionality. Although the role of platelets (PLTs) for wound closure and

induction of regenerative processes is well established, the knowledge about their

contribution to apoptosis is incomplete. Here, we show that PLTs present the death

receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the

isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis

in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma

cells, andmouseembryonic fibroblasts.Membraneprotein fromPLTs lackingmembrane-

bound FasL (FasL4m/4m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial

apoptosis signaling in target cells was not required for PLT-induced cell death, but

increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion

significantly reduced apoptosis in a stroke model and an inflammation-independent

model of N-methyl-D-aspartic acid-induced retinal apoptosis. Furthermore, experiments

using PLT-specific PF4Cre1 FasLfl/fl mice demonstrated a role of PLT-derived FasL for

tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how

PLTs contribute to tissue homeostasis. (Blood. 2015;126(12):1483-1493)

Introduction

At sites of tissue injury and endothelial damage, platelet (PLT) recruit-
ment and accumulation are early key steps triggering a complex
response to restore tissue integrity.1-4 Upon attachment to an endothelial
wound, PLTs become activated, spread out over the lesion, and recruit
other PLTs, forming a wound sealing thrombus.1,5 Recently, various
effects on tissue remodeling have been attributed to PLTs including
modulation of regeneration, inflammation, and tissue homeostasis.6-8

PLT dysregulation contributes significantly to initiation or progression
ofpathologies.5,9,10Accordingly, thepathogenetic roleofPLTshasbeen
demonstrated in diseases of high socio-economic relevance including
atherosclerosis or ischemic stroke,11,12 but also in unexpected disease
settings such asmultiple sclerosis13 or rheumatoid arthritis.14 In the
latter, PLTs amplify inflammation via collagen-dependent micropar-
ticle production,14 whereas in the former, PLT activation contributes to

neuronal tissue damage by recruitment and activation of inflammatory
cells.13 Besides these mechanisms, PLTs may balance tissue homeo-
stasis in various previously unappreciated ways. Given the spatiotem-
poral relationship between PLT activation and initiation of apoptosis in
injured tissues, PLTs may induce apoptosis following disruption of
tissue integrity.

In multicellular organisms, damaged or superfluous cells are re-
movedbyprogrammedcell suicide.15,16The apoptosis programcontrols
cell turnover, regulates the immune response, and eliminates defective
cells, thereby balancing tissue homeostasis.15,17,18 By eliminating
damaged cells and their content, apoptosis generally avoids tissue
inflammationwith potential long-term defects in contrast to other forms
of cell death.17,19Apoptosis canbe inducedviadeath receptor-mediated
(extrinsic) or mitochondrial (intrinsic) signaling.20,21 The intrinsic
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pathway is activated in response to cellular stress such as DNA damage
or growth factor deprivation. Cells are committed to apoptosis when the
proapoptotic Bcl-2 proteins Bax and Bak permeabilize the outer mito-
chondrial membrane (OMM), leading to the cytosolic release of inter-
membrane proteins such as cytochrome c.21,22 The activity of Bax and
Bak is triggered by BH3-only proteins and inhibited by pro-survival
Bcl-2 proteins in a complex network that involves the regulation of
Bax shuttling on and off the OMM.23,24

The extrinsic apoptosis pathway depends on the activation of cell
surface receptors such as the death receptor Fas (CD95, APO-1).
Fas is amember of the tumor necrosis factor receptor familywith an
intracellular domain that forms trimers prior to activation.25,26 Although
Fas is widely expressed in human tissues, its ligand Fas ligand (FasL,
CD95L) is primarily expressed by activated T cells, natural killer (NK)
cells, and monocytes.27 FasL occurs in a soluble and a membrane-
bound form, but only the latterwas shown to be involved in apoptosis
induction.28 Ligation of Fas triggers the activation of pro-caspase 8 and
downstream caspase 3. In addition, the BH3-only protein Bid can be
processedbycaspase8 to truncatedBid,which activatesBaxandBakon
the OMM and, thus, initiate mitochondrial apoptosis signaling.29,30

Although it is accepted that Fas signaling is important for apoptosis
induced by tissue damage, the origin of the apoptosis signal following
injury remains unclear. In this study, we describe a novel role of PLT
membrane-bound FasL in apoptosis secondary to tissue injury.

Materials and methods

Mice

C57BL/6 mice were obtained from The Jackson Laboratory and bred in our
animal facility. Mice lacking the membrane-bound part of FasL (FasL4m/4m

mice) were generated and described recently.28 Littermates were compared
with each other and wild-type (WT) littermates served as control. Mice
deficient for glycoprotein (GP) Iba featuring severe thrombocytopenia31

were kindly provided by Dr Jerry Ware (University of Arkansas). Animal
experiments were approved by governmental authorities and performed in
accordance with theGerman lawguidelines of animal care. FasLfl/flmicewere
described by Dr S. Karray (INSERM, France) before.32 FasLfl/fl mice, which
we kindly received from Dr Martin-Villalba (University of Heidelberg) were
crossed to PF4-Cre mice, which we acquired from The Jackson Laboratory
(C57BL/6-Tg [Pf4-cre]Q3Rsko/J). PF4-Cre1FasLfl/flmiceor PF42Cre2FasLfl/fl

littermate controls were analyzed for tissue apoptosis using the transient middle
cerebral artery occlusion (tMCAO) stroke model.

Isolation of PLTs and PLT membrane proteins

Human PLTs were isolated as described before.33 Murine PLT preparations
were obtained using amodified protocol.34 Briefly, bloodwas drawn from the
retro-orbital plexus via heparinized capillaries into a tube with 300 mL acid
citrate-dextrose buffer (12.5 g sodium-citrate, 2 g citric acid, 10 g glucose in
500 mL distilled water, pH 4.7). To prevent PLT activation, apyrase and
prostacyclin were used. To activate PLTs, isolated PLTs were stimulated
at room temperature with 20 mM adenosine diphosphate (ADP), 25 mM
thrombin receptor activating peptide (TRAP), or 0.2 U/mL thrombin. PLT
activation was terminated by adding an equal volume of 4% paraformalde-
hyde (PFA) in phosphate buffered saline (PBS) to exclude any PLT-derived
activity potentially affecting assay readouts. After incubation at 4°C for
30 minutes, fixed PLTs were washed thrice with PBS to remove any
remaining PFA or activators, and resuspended in PBS. As positive control,
1 mM staurosporine (STS) was used. To isolate membranes from PLTs, the
Mem-PER Eukaryotic Membrane Protein Extraction Reagent Kit (Thermo
Scientific, Rockford, IL) was used. Isolated murine or human PLTs, ex-
tracted membranes, or soluble proteins from PLTs were used in subsequent
experiments to induce apoptosis. PLT activation was monitored by flow

cytometry using an anti-mouse P-selectin (CD62P) antibody (Ab) (Wug.E9;
Emfret Analytics, Eibelstadt, Germany). To assure clean PLT preparations, we
quantified leukocyte contamination using the Leucocount Kit (BD Biosciences,
Heidelberg, Germany) as described by Burkhart et al.35

Isolation of primary murine neuronal cells and bone

marrow-derived macrophages

Neuronal cell cultures were obtained from WT C57BL/6 mouse embryos
(embryonic day 18) following previous protocols.36 Briefly, pregnant mice
were euthanized by cervical dislocation, and embryos were removed and
transferred into warmed Hank’s Balanced Salt Solution (HBSS) (Invitrogen,
Darmstadt, Germany). After preparation of hippocampi, tissue was collected
in 5 mL of 0.25% trypsin in HBSS. After 5 minutes of incubation at 37°C, the
tissue was washed twice with HBSS and dissociated in 1 mL of neuronal
medium (10% 103 Modified Earl’s medium, 0.22% sodium bicarbonate,
1 mM sodium pyruvate, 2 mM L-glutamine, 2% B27 supplement [all
from Invitrogen], 3.8 mM glucose [Merck, Darmstadt, Germany], and
1% penicillin/streptomycin [Biochrom, Berlin, Germany]) by triturating with
fire-polished Pasteur pipettes of decreasing tip diameter. Neurons were
diluted in neuronal medium and plated at a density of 60 000 cells/cm2 on
poly-d-lysine-coated (Sigma, Steinheim, Germany) coverslips in 4-well
plates. All cell cultures were incubated at 37°C and 5% CO2 for up to 5 to
7 days before experiments.

Hippocampal cell cultures were incubated with PLT lysates at the
indicated dilutions for 24 hours. To analyze cell death, cultures were stained
with 0.5 mg/mL 4,6 diamidino-2-phenylindole (DAPI) (Merck) or primary
Abs against NEUronal Nuclei (NeuN) (1:1000; Millipore, Darmstadt,
Germany) and active caspase 3 (1:800; Cell Signaling Technology, Frankfurt,
Germany). Secondary cyanine 2-labeled donkey anti-mouse and Cy3-labeled
goat anti-rat Abs were obtained from Dianova (Hamburg, Germany) and
used at a 1:100 dilution. Negative controls were obtained by omitting the
primary or secondary Ab and revealed no detectable signal (not shown). For
quantification, samples were analyzed in a blinded fashion using fluores-
cence microscopy.

Bonemarrow-derivedmacrophageswere isolated as described previously.37

The medium was changed every second day, loosely adherent dendritic cells
were removed after 1 week, and the adherent macrophages were collected and
used for experiments.

Flow cytometry

Flow cytometry was generally performed as described.38,39 Briefly, fixed
blood cells or isolated PLTs (as indicated in figure legends) were re-
suspended, diluted 1:25 with fluorescence-activated cell sorter (FACS)
buffer (0.5% bovine serum albumin; 0.1% sodium azide in PBS), and
stained with anti-mouse FasL-Biotin (MFL-3) Ab, anti-human FasL-PE
(NOK-1) Ab, or with the corresponding immunoglobulin (Ig)G control
(P36281; all from eBioscience, San Diego, CA) for 30 minutes at room
temperature in the dark. Afterward, the samples were washed with FACS
buffer and murine samples were stained with Streptavidin Alexa Fluor 488
(Invitrogen) for 30 minutes at room temperature in the dark. To compare
levels of PLT FasL with those of leukocytes, macrophages were stained
using an anti-CD11b PerCP and an anti-CD178 PE (MFL-3) Ab, or with the
corresponding IgG control Ab (all from BioLegend) for 30 minutes at room
temperature in the dark. Finally, samples were washed with FACS buffer
and analyzed with a FACS Calibur flow cytometer (Becton Dickinson,
Heidelberg, Germany). For detection of PLT contact with apoptotic cells,
the right cerebral hemispherewith the insult and the unaffected contralateral
hemisphere (control) were processed separately through a 40-mm cell strainer.
Cell suspensionswere stained inPBSsupplementedwith2%fetal bovine serum
and 0.5% bovine serum albumin with specific Abs for anti-CD45.2 eF450
(clone 104) and anti–CD41-APC (clone eBioMWReg30; both eBioscience, San
Diego, CA), as well as with Annexin V fluorescein isothiocyanate (FITC) and
propidium iodide (PI) according to the manufacturer’s instructions using an
Annexin V-FITC Apoptosis Detection Kit (BD Biosciences). Single PLTs were
gatedout via forward scatter and side scatter.Datawere acquiredon aFACSCanto
II (BD Biosciences) and analyzed with FloJo (Tree Star, Ashland, OR).
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Western blotting

For whole cell lysates, mouse embryonic fibroblasts (MEFs)40 and PLTs were
harvested and subjected to acetone precipitation, resuspended in sodiumdodecyl
sulfate sample buffer, and boiled for 10 minutes at 95°C. Finally, samples were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
subjected to western blot as described before.13 Afterward, membranes were
blocked with 5% skim milk in Tris-buffered saline 0.05% Tween-20 and
incubatedwithprimaryAbsat 4°Covernight. SecondaryAbwas incubated1hour
at room temperature andmembraneswerewashed thricewith Tris-buffered saline
0.05% Tween-20. Finally FasL, tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) and Tom20 as loading control were detected using anti-mouse
FasL (Cell Signaling), anti-TRAIL (Abcam, Cambridge, United Kingdom), and
anti-Tom20 Ab (Santa Cruz Biotechnology, Dallas, TX).

Confocal microscopy

Resting fixed PLTs were immobilized on poly-L-lysine–coated coverslips and
co-stained using an anti-CD62P (Abcam) and an anti-FasL Ab (Abcam). To
analyze the presence of PLTs after induction of stroke in the brain tissue in vivo,
we co-stainedmurinebrain sectionswithAbsusing the endothelialmarkerCD31
(Abcam), the neuronal marker NeuN (Millipore), and the PLT marker GPIba
(POP/B; Emfret Analytics). Primary Abs were incubated at 4°C overnight and
fluorescent secondary Abs (Dianova) for 1 hour at room temperature. Nuclei
were stained using DAPI (displayed in white in Figure 1A using Leica Confocal
Software version 2.61). Primary Abs were detected using secondary Ab anti-rat
549 (PLTs, red), anti-rabbit 488 (endothelium, green), and anti-mouse Cy5
(neurons, blue). Samples were analyzed by standard confocal immunofluores-
cence microscopy (Leica TCS SP2, DM IRE2).

Detection of apoptosis

For the different cell types, the time point for detection of apoptosis varied.
SH-SY5Y neuroblastoma cells were co-incubated with PLTs for 6 hours.
To detect apoptosis via measurement of caspase 3/7 activity, activated
PLTswere immobilized onto a 96-well plate, fixedwith PFA, washed thrice
with PBS, and incubated with cells at 37°C. Afterward, cells were incubated
with Apo-ONE caspase 3/7 reagent (Promega,Mannheim, Germany) according
to the manufacturer’s recommendations. Repeats are provided as n 5 wells
analyzed. For TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining,
the in situ Cell Death Detection Kit, TMR red was used according to the
manufacturer’s instructions (Roche, Filderstadt, Germany). Cells were seeded
onto chamber slides. The next day, activated fixed PLTs or saline were added
and co-incubated for 16 hours. For quantification, 8 different microscopic
fields per section were counted and the percentage of TUNEL-positive cells
was determined. For transwell assays, a Boyden chamber (polycarbonate
membrane filter pores 5 mm, Neuro Probe; Gaithersburg, MD) was used.
Resting or ADP-activated PLTs (23 108) were added to the lower chamber,
SH-SY5Y (23 104) to the upper chamber, or both SH-SY5Y (23 104) cells
and activated PLTs were added to the lower chamber. After 16 hours of
incubation, Annexin V staining was performed using the FITC Annexin V
Apoptosis Detection Kit I from BD Pharmingen (Heidelberg, Germany).

Induction of apoptosis using the PLT membrane fraction

For caspase 3/7measurements, SH-SY5Y cells orMEFswere seeded in 96-well
plates and treated with serial dilutions of protein fractions extracted from
human PLTs, or from murine WT or FasL4m/4m PLTs. After 6 hours incu-
bation, Apo-ONE caspase 3/7 reagent (Promega) was applied, and the
fluorescence signal was measured in 1 minute intervals with an excitation
wavelength of 490 nm and an emission wavelength of 520 nm in a plate reader.
Repeats are provided as n5wells analyzed. Due to hydrophobic buffer effects,
apoptosis activity was normalized to the corresponding samples from mock-
stimulated PLTs.

Measurement of lactate dehydrogenase (LDH) release

For measurements of LDH release, SH-SY5Y cells or MEFs were seeded in
96-well plates and treated with serial dilutions of protein fractions obtained from
human PLTs or frommurineWTor FasL4m/4mPLTs.After 6 hours incubation,

CytoTox 96 reagent (Promega) was applied and the absorbance at 490 nm was
measured in a plate reader. Total levels of cellular LDHwere determined by lysis
of untreated cells. Repeats are provided as n 5 wells analyzed. In some
experiments, MEFs deficient for Bax and Bak (double knockout [DKO]) cells40

were applied to evaluate the relevance of the intrinsic pathway to PLT-induced
apoptosis.

N-methyl-D-aspartic acid (NMDA) retina injury model

For the NMDA model, all experiments were approved by the Animal Care and
Use Committee at the National Eye Institute, National Institutes of Health
(animal study protocols 06-553, 06-570, and 07-608), and were performed
according to the National Institutes of Health guidelines and regulations on
animal studies. TheNMDAretinal injurymodelwas performedand resultswere
analyzed as described previously.41 For PLT depletion, PLT-depleting serum
(10 mL in PBS, intraperitoneal [IP]; Accurate Chemical and Scientific,
Westbury, NY) or control serum was applied 24 hours before induction of
apoptosis by NMDA injection. To monitor PLT depletion, whole blood was
taken from mice treated with control serum or PLT-depleting serum (10 mL in
PBS, IP) and the number of PLTs was analyzed with an automated cell counter
(Sysmex).

Stroke model

All stroke experimentswere performed in accordancewith the recently published
ARRIVEguidelines (NC3Rs).Animalswere randomly assigned to the treatment
groups. For PLT depletion, PLT-depleting serum (10 mL in PBS, IP) or control
serum was applied 24 hours before tMCAO.42 For depletion of macrophages,
clodronate liposomes or control liposomes were injected into mice as described
before.37 Furthermore, in some experiments, GPIIb-IIIa was inhibited to prevent
intravascular thrombosis by injection of 100mg anti–GPIIb-IIIaF(ab)2 or control
IgG as described before.43 Focal cerebral ischemia was induced by tMCAO
using the intraluminal filament technique as described.43,44 Animals were
anesthetized with 2.5% isoflurane in a 70% N2O/30% O2 mixture and body
temperaturewasmaintainedat 37°C throughout surgery.Followingamidline skin
incision in the neck, the proximal common carotid artery and the external
carotid artery were ligated, and a standardized silicon rubber-coated 6.0 nylon
monofilament (6021; Doccol, Sharon,MA)was inserted and advanced via
the right internal carotid artery to occlude the origin of the middle cerebral
artery. After 60minutes, the filament was withdrawn to allow reperfusion.
Mice were euthanized 24 hours after MCAO. Brains were quickly
removed and embedded for cryosections.45 To analyze apoptosis, the in situ
Cell Death Detection Kit, TMR red was used according to the manufacturer’s
instructions.

Data presentation and statistics

Comparisons between group means were performed using Student t test or one-
way analysis of variance. P, .05 was considered statistically significant. Error
bars indicate standard error of the mean (SEM).

Results

PLT depletion reduces tissue apoptosis in vivo

Vascular and tissue injury result in thrombus formation and sub-
sequent tissue remodeling featuring apoptosis to remove damaged
cells. Whether PLTs influence processes contributing to tissue
damage and remodeling beyond thrombus formation is currently
not known. Following stroke, we detected PLTs outside the vas-
culature in ischemic mouse brains (Figure 1A-B). Furthermore,
using a flow cytometry based approach, we observed an increase
in CD41-positive PLTs associated with CD45-negative Annexin
V-positive cells upon induction of stroke. This increase was;60%
for early apoptosis (Annexin V-positive/PI-negative cells) and
;50% for late apoptosis (Annexin V-positive/PI-positive cells)
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(Figure 1C) in comparison with the contralateral control hemi-
sphere. These findings prompted us to assess tissue apoptosis in the
presence or absence of PLTs. C57BL/6 mice were treated with PLT-
depleting serum (ie, PLT depletion) or control serum (ctrl), before
they underwent tMCAO for 60 minutes. PLTs were efficiently
depleted following anti-PLT serum application (see supplemental
Figure 1 on the Blood Web site). After tMCAO, ;30% of TUNEL-
positive apoptotic cells were detected in mock-treated animals
(Figure 1D-E). In PLT-depleted animals, however, the number of
TUNEL-positive cells after tMCAO-induced cell damage de-
creased to approximately half of the apoptotic cell pool in mock-
treated animals (Figure 1D-E). Similarly, in GPIba-deficient mice
featuring severe thrombocytopenia, tissue apoptosis was signifi-
cantly reduced compared with WT mice (supplemental Figure 2).

It is well accepted that PLTs may aggravate tissue damage by re-
enforcement of inflammatory processes.5 To further dissect the
role of PLTs for apoptosis in vivo in a setting of negligible levels of
tissue inflammation, we applied an NMDA-induced model of reti-
nal apoptosis.41 For this purpose, NMDA was injected into the vit-
reous cavity of C57BL/6 mice. When mice had been pretreated
with PLT-depleting serum, retinal apoptosis was reduced by;40%

(Figure 2A-B), showing that PLTs contribute to programmed cell death
also in a setting of low-tissue inflammation. Interestingly, we
observed no difference in tissue apoptosis after induction of stroke,
when animals were pretreated with a blocking F(ab) against GPIIb-IIIa,
which abolishes intravascular thrombosis (Figure 2C). Thus, receptors
other than GPIIb-IIIa seem to mediate PLT-induced apoptosis in the
neuronal tissue in vivo.

PLTs induce apoptosis in human and mouse neuronal cells

The direct effect of PLTs on human cells was tested by incubation
of ADP-activated PLTs with cultured SH-SY5Y neuroblastoma
cells. Significant leukocyte contamination of PLT isolations
(,1 leukocyte per 106 PLTs)was excluded (data not shown). Analysis
of caspase 3/7 activity showed that PLTs induce apoptosis in neuro-
blastoma cells in a concentration-dependent manner (Figure 3A),
whereas ADP itself had no effect (data not shown). PLT activation
was confirmed by expression of the activation marker P-selectin
(supplemental Figure 3). PLT-induced caspase 3/7 activity was
comparable to that of apoptosis stimulation by STS. Similarly, the
presence ofADP-activated PLTs resulted in a significant increase in

Figure 1. PLT depletion reduces apoptosis in a

murine stroke model in vivo. (A-E) Stroke was in-

duced in C57BL/6 mice by tMCAO for 60 minutes. (A-B)

Ischemic brain tissues were co-stained for PLT GPIba

(red), neuronal cells (NeuN, blue), and endothelial cells

(CD31, green). Nuclei were stained using DAPI (displayed

in white using Leica Confocal software version 2.61).

Scale bar, 20 mm. (A) Shows representative images.

(B) For quantification, PLTs outside of vessels were

counted in a blinded fashion using fluorescence

microscopy in healthy and ischemic brain tissue.

Data are mean 6 SEM and show the percentage

of total PLTs per section (n 5 6, 3 non-consecutive

sections per animal were analyzed). (C) Identification

of early (Annexin V1, PI2) and late (Annexin V1, PI1)

apoptosis in CD45.22 nonleukocytes that complex

with CD411 PLTs in stroke tissue and the contralat-

eral control hemisphere (upper panel). Percentage of

CD411 PLT complexes with apoptotic nonleukocytes

in the stroke hemisphere relative to the correspond-

ing contralateral hemisphere was calculated (n 5 4).

Results are presented as mean 6 SEM, *P , .05

(left, lower panel). FMO staining controls document

staining specificity and gating strategy (right, lower

panel). (D-E) Prior to stroke induction, animals were

treated with either control serum (ctrl) or PLT-depleting

serum (PLT depletion) resulting in more than 90% of PLT

depletion (supplemental Figure 1). (D) Shows represen-

tative images of stained tissue sections from a control

serum or PLT-depleting serum-treated mouse after

induction of stroke. Nuclei were stained with DAPI (blue)

and TUNEL-positive cells are depicted in red. Scale bar,

100 mM. (E) Quantification of apoptotic cells upon

injection of control serum or PLT-depleting serum. For

quantification, apoptotic cells were counted in a

blinded fashion using fluorescence microscopy.

Data are mean 6 SEM and show the percentage of

TUNEL-positive cells of total cell number per section

(n 5 6). *P , .05 vs control treated animals. FMO,

fluorescence minus one.

1486 SCHLEICHER et al BLOOD, 17 SEPTEMBER 2015 x VOLUME 126, NUMBER 12

For personal use only.on March 19, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


TUNEL-positive SH-SY5Y cells (supplemental Figure 4). In order
to distinguish between intracellular and membrane-associated
mechanisms of PLT-induced apoptosis, SH-SY5Y cells were in-
cubated with the membrane proteins or the soluble protein fraction
of ADP-stimulated or unstimulated human PLTs. Induction of cell
death was measured by LDH release.46 The membrane protein
fraction of ADP-stimulated PLTs robustly induced neuroblastoma
cell death in a dose-dependent manner (Figure 3B). In contrast, low
LDH activity was measured after treatment with the soluble protein

fraction or the membrane proteins of unstimulated PLTs (Figure 3B).
PLT-induced cell death correlated with an increase of caspase 3/7
activity in SH-SY5Y cells treated with membrane proteins of ADP-
stimulated PLTs (Figure 3C). PLTs were also activated by
thrombin or TRAP. Similar to ADP, both TRAP and thrombin-
treated PLTs induced apoptosis in neuroblastoma cells (supplemental
Figure 5). In addition, Boyden chamber experiments showed only
apoptosis induction when PLTs and neuroblastoma cells were
incubated in the same compartment (supplemental Figure 6). In

Figure 2. PLT depletion reduces apoptosis in a

retinal model with low levels of inflammation,

whereas inhibition of GPIIb-IIIa does not affect tissue

apoptosis. (A-B) Mice were treated with control serum

(ctrl) or PLT-depleting serum (PLT depletion). Subse-

quently, neuronal apoptosis was induced by intravitreal

injection of NMDA. In this model of tissue apoptosis, levels

of tissue inflammation are negligible. In retinal sections,

TUNEL staining was performed and sections were

analyzed in a blinded fashion using immunofluorescence

microscopy. Eight non-consecutive sections were ana-

lyzed per animal. (A) Shows representative images. (B)

Data are mean 6 SEM and show the number of TUNEL-

positive cells per area (n 5 8). *P , .05 vs control treated

animals. Scale bar, 100 mm. (C) Stroke was induced in

C57BL/6 mice by tMCAO for 60 minutes. Animals were

treated with a blocking anti–GPIIb-IIIa F(ab) 1 hour prior to

stroke induction. Data are mean 6 SEM and show the

percentage of TUNEL-positive cells of total cell number

per section (n5 5, 3 non-consecutive sections per animal

were counted in a blinded fashion). No significant

difference was observed between groups. INL, inner

nuclear layer; ONL, outer nuclear layer; RGC, retinal

ganglion cell.
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time course experiments, PLTs induced apoptosis signaling in
neuroblastoma cells within 6 hours (supplemental Figure 7). To assess
PLT-induced apoptosis in primarymurine cells, apoptosis of neuronal
cells isolated from the hippocampus of mouse embryos (embryonic
day 18) was assessed after exposure to membrane proteins of ADP-
activated murine PLTs. Similar to the experiments using cell lines,
PLTs also induced increased caspase 3 activity in primary neuronal
cells (Figure 3D).

Activated PLTs present membrane-bound FasL

The stimulation of cell death by PLTs in vitro suggests specific
induction of apoptosis upon cell contact with activated PLTs.
Interestingly, a minor pool of activated PLTs has previously been
implicated in Fas-mediated tumor cell apoptosis.47 Thus, the pres-
ence of death receptor ligands on PLTs was analyzed by western
blot. We detected FasL protein but not the death receptor ligand
TRAIL inmurine PLTs irrespective of prior activation (Figure 4A).
In contrast to Fas, which has a broader tissue distribution, the
expression of FasL is mainly restricted to subsets of activated
T cells, NKT cells, and NK cells.27,48 Resting human PLTs
presented low amounts of FasL on their surface, whereas activation
of PLTs by ADP resulted in significant upregulation of FasL on

their surface (Figure 4B). In parallel, upregulation of FasL surface
expression uponADP activation was also observed inmurine PLTs
(Figure 4C). Supplemental Figure 8 shows the relative expression
level of surface FasL on murine ADP-activated PLTs in compar-
ison with murine CD11b-positive macrophages. Confocal imaging
suggested that FasL is stored in granula and partially co-localizes
with CD62P (Figure 4D).

PLT-induced apoptosis is mediated by membrane-bound FasL

To further evaluate the effect of PLT FasL, we used mice deficient
for membrane-bound but not soluble FasL (FasL4m/4m mice).28

PLTs from these and WT animals were analyzed for their effect
on apoptosis induction in MEFs. Interestingly, membrane frac-
tions of ADP-stimulated PLTs fromWTmice robustly induced dose-
dependent cell death, whereas soluble fractions or membrane proteins
from resting PLTs failed to induce cell death (Figure 5A). In contrast,
membrane proteins of ADP-stimulated PLTs from FasL4m/4m mice
did not induce apoptosis in MEFs, as analyzed by LDH release and
caspase 3/7 activity (Figure 5A-B). Additionally, PLT membrane
protein-induced apoptosis was inhibited with a blocking anti-FasL
Ab in vitro (supplemental Figure 9). These results show that FasL
exposed on membranes of ADP-stimulated PLTs induces apoptosis.

Figure 3. PLTs induce apoptosis in a dose-

dependent manner in in vitro grown neuroblastoma

cells. (A) Isolated human PLTs were stimulated with

ADP, fixed with PFA to exclude PLT-derived signal,

and incubated with SH-SY5Y neuroblastoma target

cells. As positive control, cells were treated with

1 mM STS. After 6 hours, caspase activity was

measured and calculated as mean 6 SEM (n 5 6).

*P , .05 vs control. Results are expressed as per-

centage of buffer-treated control. (B) LDH activity was

measured in the supernatant of cultured SH-SY5Y cells

after application of various dilutions (43 1024; 4.53 1024;

5 3 1024) of isolated membrane protein and soluble

fractions of buffer- (2) or ADP-stimulated (1) human PLTs

for 6 hours. Data were normalized to the total LDH level

from the same amount of untreated and lysed cells. Data

represent mean 6 SEM (n 5 9) and are shown as

percentage of total cellular LDH levels of untreated cells.

*P , .05 vs corresponding soluble fraction or membrane

fractions of resting PLTs. (C) Caspase 3/7 activity

kinetics were measured in SH-SY5Y cells incubated

with various dilutions (43 1024; 4.53 1024; 53 1024)

of the isolated membrane protein and soluble fractions

of ADP-stimulated human PLTs for 6 hours. Data were

normalized to the corresponding samples from buffer-

stimulated PLTs (control). Data represent mean 6 SEM

(n 5 12) and are shown as percentage of control.

*P , .05 vs corresponding soluble fraction. (D) Primary

murine neuronal cells were incubated with buffer

(ctrl) or with membrane proteins of ADP-activated

murine PLTs (0.5 3 108 or 2.5 3 108 PLTs). To analyze

cell death, cultures were co-stained for NeuN and active

caspase 3. For quantification, staining was analyzed in

a blinded fashion by fluorescence microscopy. Data are

mean 6 SEM (n 5 5) and are shown as percentage of

total cell number per section. *P , .05 vs control. Scale

bar, 20 mm.
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The effect of mitochondrial Bax/Bak-dependent49 apoptosis on PLT-
induced cell death was analyzed by the application of soluble protein,
or the membrane protein fractions of activated or resting WT or
FasL4m/4m PLTs to Bax/Bak DKO MEFs. LDH activity measure-
ments revealed a robust and concentration-dependent induction of
cell death by membrane protein fractions isolated from activated
PLTs of WT but not FasL4m/4m mice (Figure 5C). Subsequently,
we visualized mitochondrial apoptosis signaling in SH-SY5Y cells
expressing green fluorescent protein (GFP)-Bax after exposure to
PLTs using confocal microscopy. Bax translocation to mitochondrial
foci occurred in target cells after exposure toADP-stimulatedPLTsbut
not resting PLTs (Figure 5D). Bax translocation and activation, as
revealed by staining with the conformation-specific Bax Ab 6A7, are
two hallmarks of Bax activation and mitochondrial apoptosis. These
results suggest that PLT-induced apoptosis does not require mito-
chondrial signaling, but can induce Bax activation and, thus, increase
apoptotic cell death.

To further characterize the role of PLT surface-exposed FasL in
vivo, we induced stroke in PF4-Cre1 FasLfl/fl mice. These mice defi-
cient for FasL in the megakaryocytic lineage have similar PLT counts
(Figure 6A) and similar ADP-induced aggregation (data not shown)
compared with their Cre2 littermate controls. Furthermore, expression
of important receptors for PLT function (supplemental Figure 10) and
bleeding time (Figure 6B) were not different between WT and FasL
PLT-deficient mice, respectively. Interestingly, however, we found that
apoptosis in PF4Cre1 FasLfl/fl animals was reduced in comparison with
PF4Cre2 FasLfl/fl mice (Figure 6C-D). This difference persisted after
depletion of macrophages using clodronate liposomes (Figure 6E).

Discussion

PLTs play a central role in the pathogenesis of cardiovascular and
inflammatory diseases.5,50 Their activation can occur in close spatiotem-
poral proximity to programmed cell death of damaged cells at sites of
tissue disruption. Our results show that activated PLTs induce apoptosis
in human and murine cells. FasL exposed on the cell membrane upon
PLT activation induced target cell apoptosis within 6 hours. The require-
ment of the membrane-bound form of FasL has been previously
established for T cells.28Membrane-bound FasL has been shown to
trigger aggregation of pre-assembled Fas trimers on the target plasma
membrane and, thus, the initiation of caspase 8-dependent death
receptor-mediated apoptosis in the target cell.51-53 Caspase 8-dependent
activationof theBH3-onlyproteinBid inducedmitochondrial apoptosis
signaling and, thus, increased the cell death response to death receptor
activation.29,30 Consequently, PLT-induced apoptosis in human neu-
roblastoma cells was followed by Bax translocation, and the apoptotic
response of MEFs was reduced in the absence of Bax and Bak.

Asubstantial reductionof tissue apoptosis after PLTdepletioncould
be observed in both tMCAO-induced cell death and NMDA-induced
retinal apoptosis. These findings establish a contribution of PLTs to
tissue apoptosis in vivo. Interestingly, the inhibition of GPIIb-IIIa does
not alter apoptosiswithin the stroke tissue. Thus,mechanisms other than
the engagement of this integrin account for PLT-induced apoptosis.
Here, we have identified PLT-derived FasL as one mechanism, but
future studies will have to address the contribution of other potential
mechanisms in PLT-induced apoptosis.

Figure 4. PLTs express FasL. (A) Expression levels

of death ligands FasL and TRAIL in resting or ADP-

activated murine PLTs and MEFs analyzed by western

blot. Loading equivalency was assessed by Tom20

staining. (B) Human whole blood was stimulated with

ADP (activated) or buffer (resting), fixed with PFA, and

analyzed by flow cytometry. PLTs were gated by

forward and side light scatter characteristics and

analyzed for FasL expression using a PE-coupled

FasL Ab. Data are mean 6 SEM and are shown as

percentage of control and IgG control represents the

100% control (n 5 5). *P , .05 vs control. (C) Murine

PLTs were stimulated with ADP and analyzed for

surface expression of FasL by flow cytometry. Data are

mean 6 SEM and are shown as percentage of control.

Resting PLTs represent the 100% control (n 5 7).

*P , .05 vs control. (D) PLTs were co-stained for the

a-granular marker CD62P (green) and FasL (red).

Staining was analyzed by confocal fluorescence mi-

croscopy. Scale bar, 5 mM.
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PLT-dependent cell death appears diffuse in the applied models,
possibly caused by target cells releasing soluble factors, eg, cytokines
prior to or after commitment to apoptosis.54,55 In addition to apoptosis
induction, Fas signaling stimulates the production of cytokines and
chemokines and, thus, the immune response toward dying cells.54

PLT-mediated Fas signaling may therefore induce apoptosis and effi-
cient removal of damaged cells to restore tissue integrity. In addition,
a diffuse contact interface between PLTs and the tissue is conceivable,
as during stroke, several pathomechanisms result in leakiness of the
vasculature, particularly the microcirculation.42,56

Previously, FasL-dependent apoptosis has been found to prevent
destructive inflammatory responses following viral infection in the
eye.57 Our results suggest that PLTs not only play an important role in
the apoptotic response to cell damage in the retina but potentially also
other tissues. They may also provide a rationale for the contribution of
PLTs to the pathogenesis of multiple sclerosis.13

PLT activation is a prerequisite for FasL membrane exposure,
preventing otherwise constitutive apoptosis induction and, thus,
uncontrolled tissue damage. This notion is in accordance with the
previous observation that PLTs can induce apoptosis of endothelial
cells in vitro.58,59 Consistent with our findings, the study observed the
requirement of PLT activation, but did not identify the dependency on
PLT-derived FasL for endothelial cell death. Interestingly, activated

megakaryocytes were shown to express membrane-bound FasL, but
the function remained unclear.60

Tissue or endothelial injury is a pathophysiological setting with
PLT activation, where PLTs are the first cells to reach the wound
and get activated.1,9 Our results suggest a contribution of PLTs to
tissue apoptosis besides their classical function to initiate the
restoration of tissue integrity7 and to promote long-range regener-
ative mechanisms.7,61 In contrast to uncontrolled tissue damage,
programmed cell death is an important mechanism tomaintain tissue
homeostasis.15,17,18,62,63 In the context of sepsis, Clark et al64 found
that PLT interaction with neutrophils can mediate endothelial dam-
age in the presence of lipopolysaccharide. Although cell damage
was measured by PI uptake, endothelial apoptosis was not assessed.64

In line with our findings, Ahmad et al47 showed that human PLTs
contain FasL upon activation and induce apoptosis in Fas-positive
tumor cells. Although our results clearly point toward a role of PLTs
for tissue apoptosis, their contribution could also involve further
propagation via other cell types, including inflammatory cells. The
previously unappreciated process of PLT-induced apoptosis may
prevent uncontrolled cell death and, thus, negative tissue re-
modeling with potentially interesting clinical implications. Although
stroke is a devastating disease, therapeutic options for treatment of
ischemic stroke are very limited, and less than 5% of patients are

Figure 5. PLT membrane protein induces apoptosis

via membrane-bound FasL. (A) MEFs were incubated

with various dilutions (43 1024; 4.53 1024; 53 1024)

of membrane proteins (membrane fraction) of buffer-

or ADP-stimulated PLTs from WT mice or FasL4m/4m

mice (lacking membrane-bound FasL only) for 6 hours.

Isolated soluble proteins (soluble fraction) of buffer- or

ADP-stimulated PLTs from WT mice or FasL4m/4m

mice were incubated in a dilution of 5 3 1024 of the

protein sample. Subsequently, LDH activity was mea-

sured. Data represent mean 6 SEM (n 5 9) and are

shown as percentage of total cellular LDH levels of

untreated cells. *P , .05 vs FasL4m/4m, soluble- and

membrane-fraction of resting WT PLTs. (B) Caspase

3/7 activity kinetics were measured in MEFs incubated

with various dilutions (43 1024; 4.53 1024; 53 1024)

of the isolated membrane protein fraction of ADP-

stimulated PLTs from WT or FasL4m/4m mice for 6 hours.

Isolated soluble proteins (soluble fraction) were incubated

in a dilution to 5 3 1024 of the protein sample. Data were

normalized to the corresponding samples from resting

PLTs. Data are shown as percentage of control and

represent mean 6 SEM (n 5 6). *P , .05 vs FasL4m/4m

or soluble fractions. (C) LDH activity was measured after

6 hours in the supernatant of mitochondrial apoptosis-

incompetent Bax/Bak DKO MEFs incubated with various

dilutions (4 3 1024; 4.5 3 1024; 5 3 1024) of membrane

protein (membrane fraction) of resting or ADP-stimulated

PLTs from WT or FasL4m/4m mice. Soluble proteins

(soluble fraction) were incubated in a dilution to 531024 of

the isolated proteins. Data represent mean6SEM (n5 6)

and are shown as percentage of total cellular LDH levels of

untreated cells. *P, .05 vs FasL4m/4m, soluble fraction or

membrane fraction of resting WT PLTs. (D) SH-SY5Y cells

transfected with GFP-Bax were incubated with resting

or ADP-stimulated and PFA-fixed PLTs for 6 hours.

Co-localization of GFP-Bax fluorescence (green) with

mitochondrial Tom20 staining (red) is shown in yellow

in the merged panel. Bax activation was detected with

the conformation-specific anti-Bax Ab 6A7. Co-localization

of active Bax and mitochondrial Bax is shown in cyan and

white, respectively, in the merged panel. Bars, 10 mm.
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eligible for thrombolysis therapy within a narrow time window after
onset of symptoms.65,66 Thus, to focus on the process of neuronal
apoptosis in the penumbra, which lasts from hours to days after ische-
mia, could be a promising approach to modulate long-range tissue
remodeling.66,67 Understanding the mechanisms, how PLTs connect
the initial events following vascular and tissue injury to restoration of
tissue functionality, may provide feasible therapies for stroke or other
diseases featuring PLT activation.
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